Effect of mechanical parameters on dielectric elastomer minimum energy structures
نویسندگان
چکیده
Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.
منابع مشابه
Model and design of dielectric elastomer minimum energy structures
Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional (3D) structures whose shape is determined by a configuration that minimizes the elastic energy of the actuator and the bending energy of the frame. These stuctures can then unfold upon the application of a voltage. Th...
متن کاملGenerating and Focusing the Ultrasound Waves Using Elastomer-based Capacitive Micro-Speakers
Ultrasound wave is a kind of waves with the frequency higher than the human audible frequency. Although ultrasound was first used for military identification purposes, it has been used for decades for various other applications, especially medical applications. Medical applications of ultrasound include diagnostic and therapeutic applications, such as for the treatment of cancer. In this paper,...
متن کاملMaximizing the Energy Density of Dielectric Elastomer Generators Using EquiBiaxial Loading
Dielectric elastomer generators (DEGs) for harvesting electrical energy from mechanical work have been demonstrated but the energy densities achieved are still small compared with theoretical predictions. In this study, signifi cant improvements in energy density (560 J/kg with a power density of 280 W/ kg and an effi ciency of 27%) are achieved using equi-biaxial stretching, a mechanical loadi...
متن کاملRiver Devices to Recover Energy with Advanced Materials River DREAM
This report describes the development and testing of a Galloping Hydro Electric Energy Device (GHEED) which is intended to utilize a Dielectric Elastomer Generator (DEG). The mechanical side of the GHEED includes a shape morphing element, and has been designed to convert the kinetic energy of low head and/or turbulent flows into repeating, oscillating motion. The intent is to couple this motion...
متن کاملDielectric Elastomer Generator with Equi-biaxial Mechanical Loading for Energy Harvesting
Dielectric elastomer generators (DEGs) are attractive candidates for harvesting electrical energy from mechanical work since they comprise relatively few moving parts and large elastomer sheets can be mass produced. Successfully demonstrations of the DEG prototypes have been reported from a diverse of energy sources, including ocean waves, wind, flowing water and human movement. The energy dens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013